Control of transpiration by radiation.

نویسندگان

  • Roland Pieruschka
  • Gregor Huber
  • Joseph A Berry
چکیده

The terrestrial hydrological cycle is strongly influenced by transpiration--water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model. Specifically, we argue that the steady-state water potential of the epidermis in the intact leaf is controlled by the difference between the radiation-controlled rate of water vapor production in the leaf interior and the rate of transpiration. Any difference between these two potentially large fluxes is made up by evaporation from (or condensation on) the epidermis, causing its water potential to pivot around this balance point. Previous work established that stomata in isolated epidermal strips respond by opening with increasing (and closing with decreasing) water potential. Thus, stomatal conductance and transpiration rate should increase when there is condensation on (and decrease when there is evaporation from) the epidermis, thus tending to maintain homeostasis of epidermal water potential. We use a model to show that such a mechanism would have control properties similar to those observed with leaves. This hypothesis provides a plausible explanation for the regulation of leaf and canopy transpiration by the radiation load and provides a unique framework for studies of the regulation of stomatal conductance by CO(2) and other factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water use pattern and canopy processes of cashew trees during a drying period in West Africagoo

      Water flux in a young, 4-year old, cashew (Anacardium occidentale L.) plantation was studied over a dry season, from November 2001 to March 2002, in the forest-savannah transition zone of Ghana, West Africa. The temperature-difference method was used over this five-month period to quantify the diurnal and day-to-day whole-tree sap flow (Qt) and hence the canopy scale transpiration (Ec). M...

متن کامل

A simple method for estimating water loss by transpiration in wetlands

Estimates of transpiration are often needed for hydrological management in wetlands. A new and simple method, using a portable steady-state porometer, is presented for estimating transpiration in three aquatic emergent macrophytes (reed, cut-sedge, and cattail). The method was established on the basis of the relationships between transpiration, solar radiation, relative humidity and air tempera...

متن کامل

Virtual Sensors for Designing Irrigation Controllers in Greenhouses

Monitoring the greenhouse transpiration for control purposes is currently a difficult task. The absence of affordable sensors that provide continuous transpiration measurements motivates the use of estimators. In the case of tomato crops, the availability of estimators allows the design of automatic fertirrigation (irrigation + fertilization) schemes in greenhouses, minimizing the dispensed wat...

متن کامل

Environmental controls on sap flow in a northern hardwood forest.

Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (D) and soil water interact to control transpiration in the dominant canopy species of a mixed hardwood forest in northern Lower Michigan. An improved understanding of how these environmental factors affect whole-tree water use in unmanaged ecosystems is necessary in asses...

متن کامل

Simulated Effects of Various Environmental Management Practices on Water Consumption in Open and Confined Greenhouse Systems

The objective of this study was to evaluate the effects of relative humidity, light management, minimum ventilation rates, CO2 enrichment and canopy size on water consumption in three different greenhouse systems (conventional, open heat pump, and confined heat pump) in winter, spring, and summer months. Using different relative humidity set points resulted in almost the same relative humidity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 30  شماره 

صفحات  -

تاریخ انتشار 2010